Social Links

Follow on Facebook Follow on Twitter Follow on G+Follow EiR on PinterestFollow EiR on Instagram

Xpert Access

×

Login To Get Involved!


Forgot your username?


Forgot your password?

DNRS Roof Banner

 

DNRS Interactive DVD Series & Seminars

Novel plasma phospholipid biomarkers of autism: Mitochondrial dysfunction

 

 

 

Prostaglandins Leukot Essent Fatty Acids. 2009 Jul 14. [Epub ahead of print]

 

Novel plasma phospholipid biomarkers of autism: Mitochondrial dysfunction as a putative causative mechanism.

 

Pastural E, Ritchie S, Lu Y, Jin W, Kavianpour A, Khine Su-Myat K, Heath D, Wood PL, Fisk M, Goodenowe DB. Phenomenome Discoveries Inc., 204-407 Downey Road, Saskatoon, Saskatchewan, Canada S7N 4L8.

 

Autism is a neurological disorder that manifests as noticeable behavioral and developmental abnormalities predominantly in males between the ages of 2 and 10. Although the genetics, biochemistry and neuropathology of this disease have been extensively studied, underlying causal factors to this disease have remained elusive. Using a longitudinal trial design in which three plasma samples were collected from 15 autistic and 12 non-autistic age-matched controls over the course of 1 year, universal and unambiguous alterations in lipid metabolism were observed. Biomarkers of fatty acid elongation and desaturation (poly-unsaturated long chain fatty acids (PUFA) and/or saturated very long chain fatty acids (VLCFA)-containing ethanolamine phospholipids) were statistically elevated in all autistic subjects. In all 8 of the affected/non-affected sibling pairs, the affected sibling had higher levels of these biomarkers than the unaffected sibling. Exposure of neurons, astrocytes and hepatocytes in vitro to elevated extracellular glutamate levels resulted in lipid biomarker changes indistinguishable from those observed in autistic subjects. Glutamate stress also resulted in in vitro decreased levels of reduced glutathione (GSH), methionine and cysteine, in a similar way to the decreases we observed in autism plasma. Impaired mitochondrial fatty acid oxidation, elevated plasma VLCFAs, and glutamate toxicity as putative causal factors in the biochemistry, neuropathology, and gender bias in autism are discussed.

 

PMID: 19608392 [PubMed - as supplied by publisher]

 


 

 

Related Articles:

 

  • No comments found

Leave your comments

Post comment as a guest

0 Character restriction
Your text should be more than 25 characters
Your comments are subjected to administrator's moderation.
terms and condition.

Adsense Responsive BottomBanner