Social Links

Follow on Facebook Follow on TwitterFollow EiR on PinterestFollow EiR on Instagram

Xpert Access

×

Login To Get Involved!


Forgot your username?


Forgot your password?

×

Join Us At EiR Now!

DNRS Roof Banner

 

DNRS 4th of July Sale! 15% Discount with Code:
DNRSRECOVERY

Universal AJAX Live Search

Search - Categories
Search - Contacts
Search - Content
Search - Newsfeeds
Search - Weblinks

Further studies in the developmental hyperserotonemia model (DHS) of autism

 

 

 

Brain Res. 2007 Nov 1 [Epub ahead of print]

 

Further studies in the developmental hyperserotonemia model (DHS) of autism: Social, behavioral and peptide changes.

 

McNamara IM, Borella AW, Bialowas LA, Whitaker-Azmitia PM. State University of New York at Stony Brook, New York, USA.

 

 

Prior research has reliably found high blood (hyperserotonemia) - but low brain - serotonin levels in autistic individuals. At early stages of development, high levels of serotonin in the blood may enter the brain of a developing fetus, causing a loss of serotonin terminals through negative feedback and thus disrupting subsequent serotonergic function. The current study extends earlier findings in a developmental hyperserotonemia (DHS) model of autism in Sprague-Dawley rats by treating 8 dams of developing rat pups with a serotonergic agonist, 5-methoxytryptamine (5-MT; 1 mg/kg) during development (from gestational day 12 to post-natal day 20; PND 20). DHS pups exhibited post-injection seizures, which were non-existent in saline-treated pups (p<0.05). Behavioral results in infancy indicated that DHS pups spent less time with the dam during the active phase on PNDs 15-17 (p<0.05) and experienced decreased maternal bonding in a return to dam task on PND 17 (p<0.05). On subsequent tests, DHS animals exhibited greater gnawing reactions to a novel stimulus (p<0.05), less behavioral inhibition (p<0.05), and had fewer olfactory-based social interactions (p<0.05) and greater non-olfactory mounting (p<0.05). However, there were no changes in anxiogenic behavior using the elevated plus maze (p>0.05). Post mortem analyses revealed that DHS animals had a loss of oxytocin (OT)-containing cells in the paraventricular nucleus in the hypothalamus (PVN; p<0.05) as well as an increase in calcitonin-gene related peptide (CGRP; p<0.05, one tailed) processes in the central nucleus of the amygdala (CeA) on PND 198. These results may correspond to hypothalamic and amygdalar changes in the human condition and suggest that the hyperserotonemia model of autism may be a valid model which produces many of the social, behavioral, and peptide changes inherent to autism.

 

PMID: 18062943 [PubMed - as supplied by publisher]

 


 

 

Related Articles:

 

Mold Testing & Sanitizer:

 

 

 

 

ADVERTISEMENT

 

  • No comments found

Leave your comments

Post comment as a guest

0 Character restriction
Your text should be more than 25 characters
Your comments are subjected to administrator's moderation.
terms and condition.

Adsense Responsive BottomBanner