Social Links

Follow on Facebook Follow on TwitterFollow EiR on PinterestFollow EiR on Instagram

Xpert Access


Login To Get Involved!

Forgot your username?

Forgot your password?


Join Us At EiR Now!

DNRS Roof Banner


DNRS 4th of July Sale! 15% Discount with Code:

Universal AJAX Live Search

Search - Categories
Search - Contacts
Search - Content
Search - Newsfeeds
Search - Weblinks

Neonatal serotonin depletion alters behavioral responses to spatial change and novelty




Brain Res. 2007 Jan 17; [Epub ahead of print]


Neonatal serotonin depletion alters behavioral responses to spatial change and novelty.


Hohmann CF, Walker EM, Boylan CB, Blue ME. Department of Biology, Morgan State University, Baltimore, MD 21251, USA.


Multiple brain disorders that show serotonergic imbalances have a developmental onset. Experimental models indicate a role for serotonin as a morphogen in brain development. To selectively study the effects of serotonin depletions on cortical structural development and subsequent behavior, we developed a mouse model in which a serotonin neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), is injected into the medial forebrain bundle (mfb) on the day of birth. Littermates with saline injections into the mfb and age matched mice served as controls. This study characterized the extent and duration of serotonergic denervation after the selective neonatal lesion and investigated effects on exploratory behavior, spatial learning and anxiety in mice of both sexes. We report significant decreases in the serotonergic (5-HT) innervation to cortex and hippocampus, but not to subcortical forebrain structures in 5,7-DHT-lesioned mice. The depletion of 5-HT fibers in cortical areas was long lasting in lesioned mice but autoradiographic binding to high affinity 5-HT transporters was only transiently reduced. Male but not female lesioned mice reduced their exploration significantly in response to spatial rearrangement and object novelty, suggesting increased anxiety in response to change but normal spatial cognition. Our data show that developmental disruptions in the serotonergic innervation of cortex and hippocampus are sufficient to induce permanent, sex specific, behavioral alterations. These results may have significant implications for understanding brain disorders presenting with cortical morphogenetic abnormalities and altered serotonin neurotransmission, such as autism, schizophrenia and affective disorders.


PMID: 17296168 [PubMed - as supplied by publisher]

Full Article Available Online




Related Articles:


Mold Testing & Sanitizer:







  • No comments found

Leave your comments

Post comment as a guest

0 Character restriction
Your text should be more than 25 characters
Your comments are subjected to administrator's moderation.
terms and condition.

Adsense Responsive BottomBanner