Social Links

Follow on Facebook Follow on TwitterFollow EiR on PinterestFollow EiR on Instagram

Xpert Access

×

Login To Get Involved!


Forgot your username?


Forgot your password?

×

Join Us At EiR Now!

DNRS Roof Banner

 

DNRS Interactive DVD Series & Seminars

Dynamic levels of glutamate within the insula are associated with improvements in fibromyalgia pain

 

 

 

 

Arthritis Rheum. 2008 Feb 29;58(3):903-907 [Epub ahead of print]

 

Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia.

 

Harris RE, Sundgren PC, Pang Y, Hsu M, Petrou M, Kim SH, McLean SA, Gracely RH, Clauw DJ. University of Michigan, Ann Arbor.

 

 

OBJECTIVE: Fibromyalgia (FM) is a chronic widespread pain condition that is thought to arise from augmentation of central neural activity. Glutamate (Glu) is an excitatory neurotransmitter that functions in pain-processing pathways. This study was carried out to investigate the relationship between changing levels of Glu within the insula and changes in multiple pain domains in patients with FM.

 

METHODS: Ten patients with FM underwent 2 sessions of proton magnetic resonance spectroscopy (H-MRS) and 2 sessions of functional magnetic resonance imaging (FMRI), each conducted before and after a nonpharmacologic intervention to reduce pain. During H-MRS, the anterior and posterior insular regions were examined separately using single-voxel spectroscopy. The levels of Glu and other metabolites were estimated relative to levels of creatine (Cr) (e.g., the Glu/Cr ratio). During FMRI, painful pressures were applied to the thumbnail to elicit neuronal activation. Experimental pressure-evoked pain thresholds and clinical pain ratings (on the Short Form of the McGill Pain Questionnaire [SF-MPQ]) were also assessed prior to each imaging session.

 

RESULTS: Both experimental pain (P = 0.047 versus pretreatment) and SF-MPQ-rated clinical pain (P = 0.043 versus pretreatment) were reduced following treatment. Changes from pre- to posttreatment in Glu/Cr were negatively correlated with changes in experimental pain thresholds (r = -0.95, P < 0.001) and positively correlated with changes in clinical pain (r = 0.85, P = 0.002). Changes in the FMRI-determined blood oxygenation level-dependent effect (a measure of neural activation) were positively correlated with changes in Glu/Cr within the contralateral insula (r = 0.81, P = 0.002).

 

CONCLUSION: Changes in Glu levels within the insula are associated with changes in multiple pain domains in patients with FM. Thus, H-MRS data may serve as a useful biomarker and surrogate end point for clinical trials of FM.

 

 

 

{mosgoogle}

 

{mos_sb_discuss:9}

 


 

 

Related Articles:

 

Home Testing & Sanitizer:
 

 

 

 

 

ADVERTISEMENT

 

  • No comments found

Leave your comments

Post comment as a guest

0 Character restriction
Your text should be more than 25 characters
Your comments are subjected to administrator's moderation.
terms and condition.

Adsense Responsive BottomBanner