Social Links

Follow on Facebook Follow on TwitterFollow EiR on PinterestFollow EiR on Instagram

Xpert Access

×

Login To Get Involved!


Forgot your username?


Forgot your password?

×

Join Us At EiR Now!

DNRS Roof Banner

 

DNRS Interactive DVD Series & Seminars

Protective effects of lactoferrin against intestinal mucosal damage induced by lipopolysaccharide

 

 

 

 

Yakugaku Zasshi. 2008 Sep;128(9):1363-8.

 

Protective effects of lactoferrin against intestinal mucosal damage induced by lipopolysaccharide in human intestinal Caco-2 cells.

 

Hirotani Y, Ikeda K, Kato R, Myotoku M, Umeda T, Ijiri Y, Tanaka K. Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiorikita, Tondabayashi City, Japan. This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

Indirect evidence suggests that lactoferrin (Lf), a major iron-binding protein in human milk, induces enterocyte growth and proliferation, depending on its concentration and affects the function and permeability of the intestinal mucosa. The bacterial endotoxin (lipopolysaccharide, LPS) is known to cause mucosal hyperpermeability in vivo. However, protective effects of Lf against LPS-mediated intestinal mucosal damage and barrier function in epithelial cells are not yet fully clarified. The aim of this study was to investigate whether Lf can reduce the cellular injury and alter epithelial hyperpermeability caused by LPS in human intestinal Caco-2 cells. When cell viability was measured by a WST-1 assay (tetrazolium salt-based assay), the protective effects against LPS-induced damage to Caco-2 cells were observed at doses of 800 and 1000 microg/ml Lf. The barrier function of Caco-2 monolayer tight junctions was assessed by measuring transepithelial electrical resistance (TEER) and permeability of FITC-labeled dextran 4000 (FD-4). The treatment of Caco-2 cells with Lf at doses of 400 and 1000 microg/ml significantly increased TEER as compared to treatment with LPS alone for 2 h (p<0.05). Further, at doses of 400 and 1000 microg/ml, Lf inhibited the enhancement of LPS-mediated permeability in Caco-2 cell monolayer. The results of this study suggest that Lf may have protective effects against LPS-mediated intestinal mucosal damage and impairment of barrier function in intestinal epithelial cells.

 

PMID: 18758152 [PubMed - indexed for MEDLINE]

 

 

 

{mosgoogle}

 

{mos_sb_discuss:11}

 


 

 

Related Articles:

 

  • No comments found

Leave your comments

Post comment as a guest

0 Character restriction
Your text should be more than 25 characters
Your comments are subjected to administrator's moderation.
terms and condition.

Adsense Responsive BottomBanner